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I. RESEARCH OBJECTIVES

The premise of the theoretical research effort under the title contract

resides in the recent experimental evidence about the presence i~~~Ji
turbulent flows of quasi-ordered, large scale even ts/s truc tures , which occur

randomly, but with statistically definable mean periods (Ref. 1). The

nature, growth, satura tion and regenera tion of the s truc tures vary from

family to family of flows, i.e. according to whether a two-dimensional

mixing layer , or a two-dimensional jet or a two-dimensional boundary

layer are observe d. However , for a given family of flows , the features

and history of the structures show- little dependance on Reynolds number

throughout the transitional and the fully developed turbulent regimes. In

both regimes the evolving structures appear to dominate the macroscopic

aspects of the flow, including its rate of growth/entrainment and the

associated Reynolds stresses; in addition, the process of intermittent

turbu1eT~ce production by three-dimensional energy cascade appears to be

connected with high wave-number instabilities evolved within, and

amplified by 1 the structures themselves .

These findings suggest a unified view of the turbulent process , namely:

in any specific family of flows, the dynamics of turbulence is paced by the

inviscid interaction between the mean flow and a characteristic space—

dependent non-linear fundamental large scale mode, which develops in

deterministic fashion and, in the process , intrinsically evolves determin-

istic conditions for its own periodic extinction and regeneration. The

research under the title contract aims to concretely validate that view

L~.. 
- . .



through the four-fold objective of 1) identifying the basic flow processes

which underlie the development of the non-linear large scale mode

characteristic of each family of flows, 2) constructing from first

principles an attendant theoretical model descriptive of the mode’s cyclic

history and interactions with the mean flow, 3) determining whether this

history can be altered by perturbations imposed either on the flow or on

its boundary conditions and , consequently 4) exploring possibilities for

external control of transition and turbulent flow development which may lead,

for example, to reduced skin fr iction drag of fl ight vehicles , optimized

fuel/air mixing in engine burners under a variety of operating conditions,

improved optica l quality of the gas flow through chemical laser cavities ,

etc.

Underlying the research objectives 1 and 2 is the conjecture that a

single flow process may be responsible for the non-linear cyclic develop-

ment of the large sc ale s truc tures in all families of flows and, thus, a

single mathematical model, derived from first principles without empiricism ,

may be adequate for their descrip tion. The effort carried out during the

first year of research, cov ered by the present repor t, has succeded in

1) identifying the basic flow process as the non-linear transport of vor-

ticity in the neighborhood of the critical layer for periodic flow per-

turbations (waves) possessing small but finite amplitude, and 2) develo ping

the attendent mathematical model for the case of strictly two-dimensional

wavc3. The data analyses and model fornislation which support and embody

f this ~‘.ttement of progress are described in the following section of the

report. -.

2
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II . STATUS OF THE RESEARCH EFFORT

The effort under Contract F49620-77-C-O-ll9 was initiated with a

careZu l review and study of recent experimental data for turbulent in-

compressible homogeneous mixing layers. The salient features of these data

include: -

a) a fundamenta l periodicity of the velocity fluctuations cons isten t

with a similarity scaling throughout the regions of non-linear

transitional and fully turbulent flow regimes (Refa. 2 , 3);

b) a r emarkable agreement between the fundamental periods

corresponding to measurements at the low-and high-speed edges

of the mixing layer (Ref. 2) ;

c) a significant Reynolds stress production associated with the

pairing interactions in which two large scale structures combine

to form a single, larger one (Ref. 4);

d) two distinct and separate stages of external fluid entrainment

and fine scale mixing, the former being associated with the

irrotational large scale motion of the large structures during

their individual life-time , and the latter being correlated

with the disappearance of any particular large structure upon

pairing interaction (Refs. 2, 3);

e) surprisingly long correlation times associated with the

large-structure dynamics.

The features a and b strongly suggest that wave-like, large scale

structures are generated repetitively with self preserving characteristics,

except for the length scale , which increases downstream like the local shear
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layer width. From a wave mechanics viewpoint this imp lies a repetitive

process whereby a wave of frequency 3 generates a subharmonic of frequency

3/2 , which then grows to become dominant and to generate its own sub-

harmonic, at an essentially deterministic self-preserving rate. In addition

to being consis tent with the visually observed pairing interaction, the

process of subharinonic generation at large scale appears to possess a

surpr isingly large influence upon the stress in, and the growth of, the

mixing layer according to the features noted at c and d above. The

generation of smaller scale turbulence appears to be intrinsic to, and

responsible for, the extinction of individual large structures upon their

pairing (see d above). Al though fine scale mixing results from this

process, little influence on overall flow development is indicated. Thus,

a model descriptive of the large structure dynamics should yield, as a

by product, the main features of turbulent flow development.

The nature and dynamics of large structures outlined above, as well as

the visual observations of Refs. 2 through 6, may be rationalized from a

dual viewpoint, viz either in terms of Stuart vortices which agglomerate -

(e.g. Ref. 4), or in terms of non-linear waves. Whereas the vortex

approach has been found to be only qualitatively successful (Ref. 4) and

incapable of reproducing the observed long correlation times (feature e),

the wave-mechanical viewpoint was adopted for the investigations described

here.

A wave-mechanical viewpoint immediately suggests a model forn*ilation

within the framework of classical linear and weakly non-linear stability

-. theories. However, a comparative examination of available theoretical and -

4
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experimental results (e.g. Refs . 7, 8) readily reveals the inadequacies of

the classical stability theories in accounting even for the early stages

of transition in the flow. On the theoretical side, it is found that

predictions for linear spatially growing waves (which initiate the transi-

tion process in a shear layer) do not yield conservation of vorticity and,

therefore, violate the very equation whose eigen-solutions have presumably

been determined. In the examp le of Fig. 1, vorticity peaks of magnitude

-0.8 are calculated within two wave-lengths of the origin for a hyperbolic

tangent mean velocity profile having maxinum vorticity -0.5 (Ref. 7) . On

the experimental side, harmonically resolved measurements of r.m.s.

velocities (Fig. 2 , Ref. 8) indicate the presence of harmonics and sub-.

harmonics which grow at rates quite different from those predicted either

by linear theory (Fig. 3, Ref . 7) or by weakly non-linear theory*. In

fact , neither theory is capable of justifying either the presence of the

subharmonics or their initial equilibration simultaneous with that of the

fundamental (Fig. 2), even if appeal is made to hypothetical resonances,

which are strictly possible only in temporally (as opposed to spatially)

growing instabilities. Thus , theory and experiments combine to suggest 
- -  --

that: a) the linear stability results are not uniformly valid ; b) recogni-

tion of some localized effect is required to restore uniform validity to

the theory ; c) the predicated effect  must  presumably be non-linear if it

is also to account for the generation of harmonics and subharnionics

* The initial growth rates of the harmonics and the subharmonic in Fig. 2
are , res~~5ctively, 1.5 times and 1.25 times that of the fundamental.

5
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having the behavior observed in the experiments (e.g., Fig. 2).

The source of the nonuniform validity in the linear stability solutions

becomes readily apparent upon an examination of the vorticity conservation

equation. For the s tric tly two-dimensional prob lem considered here , i.e.

a basic parallel flow with velocity (U, 0, 0), vorticity (0, 0, (~) and

Reynolds number Re (based on average mean flow velocity U and flow width L),

plus a superposed perturbation of small amplitude A involving velocities

(u, v, 0) and vorticity (0, 0, w), the equation is

- c) ~~~+v~~~ -A  (u~~-~~+v ~~~~) 
~~~~~~ 

v(O1-A w) (1)

in a frame of coordinates moving with the phase velocity c of the disturbance.

Whereas the solutions of classical linear.inviscid stability theory are ob-

tained by setting to zero the right hand side of equation (1), the approxi-

mation must fail whenever one of the terms retained at the left hand side

goes to zero , viz, for either (U - c) -, 0 near the critical point (y = y),

or fo r (~~I/~y) -. 0 near the inflection point. In those neighborhoods the

correct vorticity balance must take into account either one of the neglected -

terms on the right hand side of equation (1). A uniformly valid solution to

equation (1) must accordingly be evolved in the context of classical matched

asymptotic expansion techniques, with the expansion parameter selected in

accordance with the predominant term retained on the right hand side of the

equa tion.

The classical approach to linear and weakly non-linear stability theories

is predicated on the assumption that, for high Reynolds number flows such as

_



those of interest here, the singular nature of the linearized inviscid

perturbation equation (Ray leigh equation) in the neighborhood of the critical

layer is removed at all wave amplitudes by the sole effect of vorticity

diffusion as embodied in the linearized viscous perturbation equation

(Orr-Somme rfeld equation). This predominant effect of viscosity independent

of wave amplitude is challenged by the substantive experience accumulated

with singular perturbation problems. On that basis it may be argued that,

depending upon wave amplitude, the singularity of the linearized inviscid

perturbation equation is removed by either the effect of the small linear

higher order viscous operator or the effect of the small non-linear operator

descriptive of non-linear vorticity convection in two-dimensional wave motions

and of vorticity convection as well as stretching in three-dimensional wave

motions. Whereas the viscous effect is confined to a (boundary) region about

the critical layer having thickness independent of wave amplitude and pro-

portional to ~~~~ 
1/3 (where K denotes the Reynolds number of the mean flow

and a the dimensionless wave number of the disturbance), while the non-linear

effects influence the flow in a region about the critical layer having thick-

ness proportional to (A/u~)~ (where A de~notes the disturbance amplitude and -

u ’ the dimensionless mean velocity gradient at the critical layer), there

is always a wave amplitude A wherefor the boundary layer scale associated

with the non-linear effect becomes larger than the scale associated with

the viscous effect. For A > A the Orr-Soumierfeld description of the wave
..
~~ c

motion near the critical layer ceases to be valid , and a new class of

asymptotic solutions to the Navier Stokes equations, recognizing the non-

linear vorticity convection and stretching, are required to describe the

subsequent grow th and/or decay of the wave.

7
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Standard considerations of boundary layer scale read ily show that the

term 0 (Re4) at the right hand side of (I) predominates whenever A < io
.2
,

while the term 0(A) takes over for A > lO
_2
. Our interes t being f ocussed

on the non-linear transitiona l and full y turbulent flow regimes (where

typically A lo~~), detailed model development must be carried out by

retaining the lateral perturbation vorticity transport, 0(A) , in equation (I).

The matched asymptotic expansion technique then shows that, f o r  a spa tially

growing wave of amplitude A , wave number cit, growth rate (-a1) and

f requency 3, the noted non-linear term contributes measurably to the vorticity

balance within an (inner) region of lateral extent (6 /L) =0 [A 0
½ exp(-~~ x)]=O [A~ J

2
about the critical point, provided the wave amplitude is large enough to

render the parameter a = ~3a~] a
2 (u~ A)~~~f < 1. Under those conditions the - -

f low obtained by the superposition of a small, but finite, amplitude two-

dimensional wave upon a basic parallel flow, is characterized by a stream

function ~ in wave fixed coordinates having matched inner and outer ex-

pansions , respectively, of the form

~(i) (x ,y, t)~ E A l+(m/2) 

~m {~ ’~~ 
exp(-.~~~~~), 6] (2a)

m 0,1,.. r

- ~~~~~~ (x ,y,t) = 

~ 
(U-c) dy + E Al+~~~

2) 
~~ 

[~. ~~~
, a] (2b)

ye n 0 , l..

where

~~~
= (ar

x _ B t) (3a)

8
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2
U

= I A 2 + cos (3b)

The dependence of the functions and ; upon the parameter b < 1. in

equations (2a,b) does not provide a uniformly valid description of the flow

and, thus, must be removed. This is done by applying Lighthill’s method

of stretched coordinates to the inner expansion to obtain

2u (y-y - ) -

F C + E 
2 

~~~ 
(~ ,C) = 2 

c + cos 
~~] 

(4a)
- p— , ,..

~m 
~~~~~ 

~ exp(-..~~~ 
~~
), a] E 5~) 

~mp ~~~~~ 
C exp (- 

~~ ~
)] (4b)

the functions 
~mp 

being required to be periodic in ~ . Detailed matching in

the overlap domain 
~~~~~~ 

-, 0, 
~ 

-. then yields

co [y, ~~~~ a] 
~ ~~~~~~~~~~~~~ 

a~
12 

~np I~~~
’
~~
]

= E ~~~~ ~ [y] cos (q 
~~) 

(4c)
p=O ,l,.. q=o,l,.. 

npq

By this process the effect of non-linearity (viz, transversal transport of

• perturbation vorticity near the critical layer) in forcing mean flow pertur-

bations , harmonics and subharmonics in the outer region becomes manifest.

~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~ - -
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Specifically, one finds that

TABLE I

INNER SOLUTIONS FORCE OUTER SOLUTIONS

m p n q

0 0 0 2

1 0 0 2

2 0 ~~0 0

1 1 0,2 ,4,...

2 1 1

2 2 1 3

i.e. non-linearity results in harmonics, subharmonic and 3/2- harmonic having

growth rates in agreement with - - the experimental observations of Fig. 2 . In

addition there is a spatially amplifying mean flow perturbation (ii = 0, q = 0),

which , together with the subharmonic , appears to provide the key to the sub-

sequent flow development as outlined in the following paragraphs.

According to Fig.- 2 the-fundamental, harmonics and subharmon-ics- grow at. - --- - 4- -

their respective rates until they all equilibrate simultaneously a t x ~ 7cm.

This behavior is consistent with the predictions of the model described above ;

clear ly ,  the fundamental provide8 the driving mechanism throughout the

considered interval for simultaneous equilibration of the harmonies and sub-

harmonic to be achieved. Whereas the experimental data suggest that the

equiliuLiLion is well described by a Landau type equation, one may surmise

that tue attendant mathematical description may be extracted from the

10
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• present , matched asymptotic expans ion, non-linear wave model by allowing the

attendant component solu t ions to depend upon a slow varying spatial variable,

viz. X = x64. Analogy with the results of weakly non-linear theory (Ref . 9)

then suggests that the cond ition of  integrabi li ty f o r  the n = 2 outer

solution should yield the desired equation.

Subsequent to the equilibration of the fundamental two significant

effects arise according to the data of Fig. 2 , namely: 1) the subharmonic ,

of dimensionless frequency (3/2) in the flow of width L, first resumes

growth at the rate appropriate to a linear wave of d imensionless frequency

3 in a mean flow of width 2L , and then equilibrates at essentially the

same amplitude as did the origina l fundamental; 2) the original fundamental

decays in the presence of three-dimensional distortions and formation of

secondary s treamwise vortex struc tures . Again the model of equations

(4-a,b,c) appears to provide the framework for rational interpretation and

deterministic analysis of these events. Specifically, one may surmise that

the first effect, which esentially descr ibes the repe titive agg lomeration of

large scale structure typically observed in turbulent mixing layers , develops

at the station where the lateral scale of the mean flow [which according to

Table I is forced to grow at a rate (_ci~)] matches the frequency/wave

number of the subharrnonic, so that the latter becomes an eigensolu’-ion of

the problem. The second effect may be interpreted either as the onset of

Taylor instabilities within certain portions of the finite amplitude large-

scale structure associated with the initially dominant two-dimensional

instnbility, or as the effectively equivalent development of non-linear

thrce-d~mensional motions of the type observed in boundary layer transition

11
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experiments (Ref. 10) , triggered by a spanvise modulation in the amp litude

of the dominant two-dimensional ins tability.* In either case streamwise

vortices are generated which, in turn , must stretch and precess around one

another , eventually breaking down into smaller scale structures. Thus ,

quasi-deterministic processes of intermittent energy cascade to high wave

numbers and attendant turbulence generation can be envisaged.

The key points in this deterministic view of the cyclic history of

two-dimensional large scale structures are : a) unstable modes exhibit non-

linear behavior beginning at modest amplitudes A > io
_2
; b) the non-linear

behavior at A > lO
_2 

forces sinultaneously a larger scale subharmonic mode

(the seed of the next structure) and a mean flow perturbation growing at

distinct rates; c) as the initially dominant mode equilibrates the per-

turbed mean flow and the forced subharmonic become geared to “resonate”

and, thus, to provide growth of the next structure; d) while the new

structure grows, the initial one decays by cascading energy to three-

dimensional modes which represent instabilities intrinsic to the non-

linear vorticity distribution within the initial structure itself; e) only

the model of equations (4-a,b,c) appears capable of describing the non-

linear effects noted at b), clearly prerequisite to the statistically

* An analysis of the data of Ref. 10, carried out under a parallel OSR-sponsored
ef f o r t, suggests that non-linear transport and stretching of vorticity near the
critical layer (i.e. the very flow processes addressed by the present model)
goveLL the non-linear phase of  boundary layer transition.
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periodic history of events indicated at c) and d) and observed in experi-

ments.

The fact that the model of equations (4-a,b,c)  reproduces so many

features of the non-linear phases of  mixing layer transition, as observed

in the specific experiment of Ref. 8 (Fig. 2), is quite gratifying. However,

since the model as well as the experiment are concerned with situations

wherein the spectrum of input disturbances is sharply peaked about a single

frequency, one may wonder abou t the app licability/extenSion of the results

to actual transitional and turbulent flows, which are character ized by

relatively broad spectra of input disturbances. The considered effects

and the model are non-linear; thus, the principle of superposition may not

be applied to the study of distinct, dispersive, finite amplitude waves

having either coincident or overlapping critical layer regions. By contrast,

superposition may be invoked if the considered waves are bound (i.e. the

wave train possesses non-dispersive characteristics), for then the flow

processes within the critical layer region retain coherence throughout the

non-linear development of the wave/structure. Given an input spectrum

of disturbances which are dispersive in the linear limit, the first

- situation can be expected to prevail if the effects of randomness dominate

over the effects of non-linearity, while the second situation may be anti-

cipated in cases where the non-linearity becomes controlling. Given the

ample experimental evidence about quasi-ordered structures with statistically

definable characteristics, we submit that turbulence dynamics is controlled

by the effects of non-linearity, with the effects of randomness enteri~g

only at the next order of approximation. Accordingly, the model of equations

13
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f4-ab,c) embodies the basic features of the attendant processes. This view,

which represents the second and perhaps predominant departure of the present

research effort from the classical trends of classical weakly non-linear

*
stability theory, is justified in preliminary fashion by the arguments of

the following paragraphs.

The development of a coherent structure in a turbulent flow is con-

ceptual)--i equ ivalent to the development of the predominant non-linear

wind-driven wave on the free surface of a body of water. In both cases

linear wave trains (dispersive in the linear limit) evolve, through non-

linear processes , into non-linear wave trains possessing broad power-

spectra characterized by a predominant frequency. A comparative study of

related experiments can then be instructive. The results of Reference 13

prove quite revealing as they show that, under conditions of fixed fetch

and steady wind blowing in one direction: I) essentially all the energy

in the resulting non-linear wind-wave system is contained in the bound wave

components of a single dominant wave of frequency ~ 0
, wave number k0; 

2) the

individual spectral components do not propagate as free waves and do not

obey the usual dispersion- relation; 3) energy is propagated at a single

group velocity corresponding to the dominant frequency; 4) the evolution

* Weakly non-linear stability theory is predicated on the assumptions that:
1) to a first approximation disturbance spectra are made up of many linear,
random, free wave components with Gaussian or near-Gaussian statistics;
2) non-linear interactions are effective only among wave components which
are resonant based on the linear dispersion relation for free waves.

14 
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of the wave train is well described by the non-linear Schr~ dinger equation

i
~~~~~

+
~~~~~~~)- ~~~~ 2 

~~
-4 -- ~~~ k0

2
~~AJ

2
A = 0  (5)

where A denotes the complex envelope of the wave train related to the free

surface displacement ~ (x ,t) through

A(x ,t) = a(x, t) exp [i e (x,t )]  (6a)

= ct(x,t) cos [(k0x — w0t) + e(x,t)] (6b)

with a(x ,t) and 8(x ,t) slowly varying functions of x and t.

It is quite interesting tha t equation (5) [or close equivalents thereof]

has been obtained in analytical studies of the long t ime evolution of Stokes

wave trains subject to modu lational perturbations (Refs . 14, 15, l6)* as well

as a generalization of Landau ’s equation for near neutral non-linear wave

systems in parallel shear flows (Refs . 17, 18) . Thus , experiments for wind

waves and theory for those waves as well as for shear flow instabilities

are congruent- -provided the flow- mechanism is credited with a narrow band -pass

capability which selects a specific dominant frequency ac the considered

fetch.

* A Stokes wave train is characterized by a sing le fu ndamental frequency,
a finite but uniform amp litude, and a power spectrum with a dominant
component at the carrier frequency plus a series of less energetic corn-
ponents at the  frequencies of the bound-wave harmonics of the carrier .
Such a wave train is uns table to modulational perturbations.

15



As is veil known , the dominant frequency of a wind wave sys tem changes

(diminishes) with fetch , so one must ask how energy is shifted from one

carrier frequency to the next lower one and , thus, how the narrow band -

pass characteristic is achieved . Aga in the experiments of Ref . 13 prove

quite illuminating by showing that , even in the absence of wind , a modulated

non-linear wave train can undergo a self-induced shift to a new lower

carrier frequency whenever further growth of the modulation would require

some wave to exceed a maximum realizable steepness. If the modu lation

frequency ~w0 is prescribed, the frequency shift is from to (w0-8w0)i.e.

from the dominant frequency of the initial wave-train to the lower of the

pair of sideband frequency components representing the amplitude modu lation.

In wind-driven waves A = ak , where a denotes the wave amplitude and k
0 0

wavenuniber, in accord with the theory of Refs . 14 and 15; however , no theory

exists for predicting the conditions of amplitude and modulation under which

the frequency shift occurs . The development of such a theory would allow

the rate of occurrence of frequency shift  to become predictable and ,

accordingly, the evolution of wave spectra to become amenable to deter-

ministic description.

The direct analogy between the findings of Ref. 13 and the experimental

evidence for turbulent shear flows resides in the observation that:  1) at

a given distance (fetch) from the orig in of the flow, equivalent roles are

p layed by the dominant wave and by the quasi-ordered structure; 2) statis-

tically unique frequency/scale of the dominant structure/wave at that

fetch are determined by the upstream sequence of selective frequency shifts

allowed by the self-induced non-linear behavior of the locally dominant

16
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wave. Whereas the model of equations (4a ,b ,c) describes the non-linear

wave behavior in strictly two-dimensiona l cases , identifies the generation

of attendant sideband frequency (subharmonic) as well as mean flow per-

turbations, and finally, upon non-linear equilibration of the carrier,

allows for the growth of the sideband frequency mode consistent with the

observations of Refs . 2 through 6 and 8, the advocated analogy between

wind-driven waves and shear flow instabilities appears to encompass all

aspects of the dominant instability evolution in the two problems. In

this context the model of equations (4a,b,c) provides for two-dimensional

shear flow instabilities the closing theoretical link, which is still

missing in the wind -wave problem. Its significance vis-a-vis the classical

viewpoint of weakly non-linear s tability theory mainly resides in its

ability to characterize the salient features of experimental observations

in transitional and turbulent flows, viz, the generation/growth of side-

band frequency modes (subharmonics in the case of two-dimensional mixing

layers) and the selection of a fetch dependent frequency for the dominant

fluctuation mode, as inherent, deterministic, self—induced effects of

non-linear wave behavior.

To be sure the description of flow more complicated than the two-

dimens ional incompressible mixing layer requires that the model of

equations (4a ,b ,c) be extended to describe the non-linear behavior of

1) two-dimens iona l waves possessing periodic spanwise amp litude modulation

in incompressible flows and 2) oblique as well as two-dimensional waves

with and without spanvise periodic amplitude modulation in compressible

flows. A comparison between the self-induced non-linear effects

17
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determined by these analyses and the experimental evidence about quasi-ordered

events should then reveal the dominant mechanism for transition and turbulence

sustenance in each family of flows. According to the discussions above this

line of inqu iry is the most promising one; thus, the continuation of the

H research effort is to be focused on it.

18
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Fig. 1. Spatially growing dis turbances  ih a free shear
layer. Lines of constant  vor t ic i ty  predicted by
linear stability theory. After Michalke (Ref. 7).
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Fig. 3. Spatially (—) and terop arally (——-- ) growing disturbances in a free
shear layer. Predictions of linear stability theory for wave number
a , phase velocity c - , and spatial amp lifiáatiOfl rate as a function

o~ frequency ~r
• After Nichalke (Ref. 7 ).
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